Journal of Water Security, Volume 1 (2015)

Adsorption of paraquat dichloride to kaolin particles and to mixtures of kaolin and hematite particles in aqueous suspensions

Dina Alexandra Martins, Manuel Simões, Luís Melo
University of Porto, Portugal

Abstract

Deliberate contamination with pesticides is a potential risk to water security, due to the availability of these contaminants and the fact that they do not need special expertise to handle or apply. Adsorption of the herbicide paraquat from an aqueous solution to suspended particles of kaolin and kaolin/hematite mixture was investigated by kinetic and equilibrium assays, taking into consideration several parameters such as initial pH, sorbent dosage and agitation speed. The results showed that the adsorption process is quite fast, reaching an 18% reduction in paraquat concentration in a very short period of time. The addition of hematite particles to kaolin suspension had no apparent effect on the maximum amount of paraquat adsorbed. Kinetic parameters were determined by fitting the pseudo-second order model to the experimental data (correlation coefficients close to 1). Isotherm studies indicate an inhibitory effect, promoted by hematite particles, that was not detected in the adsorption assays. Equilibrium data was best adjusted using the Langmuir model which yielded higher correlation coefficient values and smaller normalized standard deviations.

Keyword(s): water contamination; adsorption; paraquat; kaolin; hematite


References

Amondham, W.; Parkpian, P.; Polprasert, C.; Delaune, R.; Jugsujinda, A. 2006. Paraquat adsorption, degradation, and remobilization in tropical soils of Thailand. Journal of Environmental Science and Health Part B, 41(5), 485–507. http://dx.doi.org/10.1080/03601230600701635

Bouzerara, F.; Harabi, A.; Achour, S.; Larbot. A. 2006. Porous ceramic supports for membranes prepared from kaolin and doloma mixtures. Journal of the European Ceramic Society, 26(9), 1663–1671. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.244

Calderon, R. 2000. The epidemiology of chemical contaminants of drinking water. Food and chemical toxicology, 38, S13–S20. http://dx.doi.org/10.1016/S0278-6915(99)00133-7

Cornell, R.M.; Schwertmann, U. 2003. The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons.

Cussler, E. 1997. Diffusion: Mass Transfer in Fluid Systems. 3rd ed. Cambridge University Press.

Danish, M.; Sulaiman, O.; Rafatullah, M.; Hashim, R.; Ahmad, A. 2010. Kinetics for the removal of paraquat dichloride from aqueous solution by activated date (Phoenix dactylifera) stone carbon. Journal of Dispersion Science and Technology, 31(2), 248–259. http://dx.doi.org/10.1080/01932690903167368

Directive, E.C. 1998. 98/83/EC of 3 November 1998 relative to the quality of drinking water. Official Journal of the European Union L, 330, 32.

Draoui, K.; Denoyel, R. ; Chgoura, M.; Rouquerol, J. 1999. Adsorption of paraquat on minerals: a thermodynamic study. Journal of Thermal Analysis and Calorimetry, 58(3), 597–606. http://dx.doi.org/10.1023/A:1010152411288.

Gao, J.; Maguhn, J.; Spitzauer, P.; Kettrup. A. 1998. Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: Equilibrium assessments, effect of organic carbon content and pH. Water Research, 32(5), 1662–1672. http://dx.doi.org/10.1016/S0043-1354(97)00377-1

García-Sosa, I.; Ramírez, F. de M. 2010. Synthesis, solid and solution studies of paraquat dichloride calixarene complexes. Molecular modelling. Journal of the Mexican Chemical Society, 54(3), 143–152.

Gauthier, V.; Gérard, B.; Portal, J.-M.; Block, J.-C.; Gatel, D.1999. Organic matter as loose deposits in a drinking water distribution system. Water Research, 33(4), 1014–1026. http://dx.doi.org/10.1016/S0043-1354(98)00300-5.

Giles, C.H., MacEwan, T.; Nakhwa, S.; Smith. D. 1960. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society (Resumed), 3973–3993. http://dx.doi.org/10.1039/JR9600003973.

Gleick, P.H. 2006. Water and terrorism. Water Policy, 8(6), 481–503. http://dx.doi.org/10.2166/wp.2006.035

González-Pradas, E.; Villafranca-Sánchez, M.; Rey-Bueno, D.; Ureña-Amate, M.D.; Fernández-Pérez, M. 2000. Removal of paraquat and atrazine from water by montmorillonite – (Ce or Zr) phosphate cross-linked compounds. Pest Management Science, 56(6), 565–570. http://dx.doi.org/0.1002/(SICI)1526-4998(200006).

Gorgulho, H.F.; Gonçalves, F.; Pereira, M.F.R.; Figueiredo, J.L. 2009. Synthesis and characterization of nitrogen-doped carbon xerogels. Carbon, 47(8), 2032–2039. http://dx.doi.org/10.1016/j.carbon.2009.03.050.

Hamadi, N.K.; Swaminathan, S.; Chen. X.D. 2004. Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires. Journal of Hazardous Materials, 112(1), 133–141. http://dx.doi.org/10.1016/j.jhazmat.2004.04.011.

Ho, Y.S.; McKay, G.1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. http://dx.doi.org/10.1016/S0032-9592(98)00112-5.

Homem, V.; Alves, A.; Santos, L. 2010. Amoxicillin removal from aqueous matrices by sorption with almond shell ashes. International Journal of Environmental and Analytical Chemistry, 90(14-15), 1063–1084. http://dx.doi.org/10.1080/03067310903410964.

Hsu, S.T.; Pan, T.C. 2007. Adsorption of paraquat using methacrylic acid-modified rice husk. Bioresource technology, 98(18), 3617–2361. http://dx.doi.org/10.1016/j.biortech.2006.11.060.

Hussain, S.T. 2001. Charge characteristics of oxides/hydroxides in aqueous and organic solvents. PhD Thesis, University of Peshawar.

Iglesias, A.; López, R.; Gondar, D.; Antelo, J.; Fiol, S.; Arce, F. 2010. Adsorption of paraquat on goethite and humic acid-coated goethite. Journal of hazardous materials, 183(1), 664–668. http://dx.doi.org/10.1016/j.jhazmat.2010.07.077.

Iordanova, N.; Dupuis, M.; Rosso, K.M. 2005. Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. The Journal of chemical physics, 122(14), 144305. http://dx.doi.org/0.1063/1.1869492.

De Keizer, A. 1990. Adsorption of paraquat ions on clay minerals. Electrophoresis of clay particles. In: Interfaces in Condensed Systems. Springer, pp. 118–126.

Koppelman, M.; Dillard. J. 1977. A study of the adsorption of Ni (II) and Cu (II) by clay minerals. Clays Clay Minerals, 25, 457–462. http://dx.doi.org/10.1346/CCMN.1977.0250612.

Lagaly, G. 2001. Pesticide-clay interactions and formulations. Applied Clay Science, 18(5), 205–209. http://dx.doi.org/10.1016/S0169-1317(01)00043-6.

Ma, W.; Song, X.; Pan, Y.; Cheng, Z.; Xin, G.; Wang, B.; Wang, X. 2012. Adsorption behavior of crystal violet onto opal and reuse feasibility of opal-dye sludge for binding heavy metals from aqueous solutions. Chemical Engineering Journal, 193, 381–390. http://dx.doi.org/10.1016/j.cej.2012.04.049.

Madden, A.S.; Hochella Jr, M.F.; Luxton, T.P. 2006. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu 2+ sorption. Geochimica et Cosmochimica Acta, 70(16), 4095–4104. http://dx.doi.org/10.1016/j.gca.2006.06.1366.

Meunier, A.; Fradin, N. 2005. Clays. Springer.

Mustafa, S.; Tasleem, S.; Naeem, A. 2004. Surface charge properties of Fe2O3 in aqueous and alcoholic mixed solvents. Journal of Colloid and Interface Science, 275(2), 523–529. http://dx.doi.org/10.1016/j.jcis.2004.02.089.

Nandi, B.; Goswami, A.; Purkait, M. 2009a. Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials, 161(1), 387–395. http://dx.doi.org/10.1016/j.jhazmat.2008.03.110.

Nandi, B.; Goswami, A.; Purkait, M. 2009b. Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Applied Clay Science, 42(3), 583–590. http://dx.doi.org/10.1016/j.clay.2008.03.015.

Oliveira, D.R. 1990. Sujamento por partículas em suspensão aquosa - Interacções superficiais.

Pateiro-Moure, M.; Bermúdez-Couso, A.; Fernández-Calviño, D.; Arias-Estévez, M.; Rial-Otero, R.; Simal-Gándara, J. 2010. Paraquat and diquat sorption on iron oxide coated quartz particles and the effect of phosphates. Journal of Chemical & Engineering Data, 55(8), 2668–2672. http://dx.doi.org/10.1021/je900945h.

Pateiro-Moure, M.; Pérez-Novo, C.; Arias-Estévez, M.; Rial-Otero, R.; Simal-Gándara, J. 2009. Effect of organic matter and iron oxides on quaternary herbicide sorption-desorption in vineyard-devoted soils. Journal of Colloid and Interface Science, 333(2), 431–438. http://dx.doi.org/10.1016/j.jcis.2009.02.019.

Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.; Zhang, W.; Zhang. Q. 2009. Critical review in adsorption kinetic models. Journal of Zhejiang University Science A, 10(5), 716–724. http://dx.doi.org/10.1631/jzus.A0820524.

Quintelas, C.; Figueiredo, H.; Tavares. T. 2011. The effect of clay treatment on remediation of diethylketone contaminated wastewater: uptake, equilibrium and kinetic studies. Journal of Hazardous Materials, 186(2), 1241–1248. http://dx.doi.org/10.1016/j.jhazmat.2010.11.131.

Ramos-Tejada, M.; Ontiveros, A.; Viota, J.; Durán, J. 2003. Interfacial and rheological properties of humic acid/hematite suspensions. Journal of Colloid and Interface Science, 268(1), 85–95. http://dx.doi.org/10.1016/S0021-9797(03)00665-9.

Rao, P.S.C.; Hornsby, A.G. 1989. Behavior of pesticides in soils and water. Circular E-Oklahoma State University, Cooperative Extension Service, 891, 67-70.

Rouquerol, J.; Rouquerol, F.; Sing, K.S. 1998. Adsorption by Powders and Porous Solids. Academic Press.

Rytwo, G.; Nir, S.; Margulies, L. 1996. Adsorption and interactions of diquat and paraquat with montmorillonite. Soil Science Society of America Journal, 60(2), 601–610. http://dx.doi.org/10.2136/sssaj1996.03615995006000020038x.

Rytwo, G.; Tropp, D.; Serban, C. 2002. Adsorption of diquat, paraquat and methyl green on sepiolite: experimental results and model calculations. Applied Clay Science, 20(6), 273–282. http://dx.doi.org/10.1016/S0169-1317(01)00068-0.

Santos, M.S.; Alves, A.; Madeira L.M. 2011. Paraquat removal from water by oxidation with Fenton’s reagent. Chemical Engineering Journal, 175, 279–290. http://dx.doi.org/10.1016/j.cej.2011.09.106.

Santos, M.S.; Schaule, G.; Alves, A.; Madeira, L.M. 2013. Adsorption of paraquat herbicide on deposits from drinking water networks. Chemical Engineering Journal, 229, 324–333. http://dx.doi.org/10.1016/j.cej.2013.06.008.

Seki, Y.; Yurdakoç, K. 2005. Paraquat adsorption onto clays and organoclays from aqueous solution. Journal of Colloid and Interface Science, 287(1), 1–5. http://dx.doi.org/10.1016/j.jcis.2004.10.072.

Sen, T.K.; Mahajan, S.; Khilar, K.C. 2002. Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211(1), 91–102. http://dx.doi.org/10.1016/S0927-7757(02)00235-2.

Sjӧberg, M.; Bergstrӧm, L.; Larsson, A.; Sjӧstrӧm, E. 1999. The effect of polymer and surfactant adsorption on the colloidal stability and rheology of kaolin dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 159(1), 197–208. http://dx.doi.org/10.1016/S0927-7757(99)00174-0.

Smith, E.; Mayfield, C. 1977. Effects of paraquat on selected microbial activities in soil. Microbial Ecology, 3(4), 333–343. http://dx.doi.org/10.1007/BF02010740.

Soares, O.S.G.; Órfão, J.J.; Pereira, M.F.R. 2010. Nitrate reduction catalyzed by Pd-Cu and Pt-Cu supported on different carbon materials. Catalysis Letters, 139(3-4), 97–104. http://dx.doi.org/10.1007/s10562-010-0424-y.

Szalay, B. 2012. Iron oxide nanoparticles and their toxicological effects: in vivo and in vitro studies. PhD Thesis, University of Szeged.

Tsai, W.; Hsieh, M.; Sun, H.; Chien, S.; Chen, H. 2002. Adsorption of paraquat onto activated bleaching earth. Bulletin of Environmental Contamination and Toxicology, 69(2), 189–194. http://dx.doi.org/10.1016/j.chemosphere.2003.11.043.

Tsai, W.; Hsien, K.; Chang, Y.; Lo, C. 2005. Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresource Technology, 96(6), 657–663. http://dx.doi.org/10.1016/j.biortech.2004.06.023.

Tsai, W.; Lai, C.; Hsien, K. 2003a. Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. Journal of Colloid and Interface Science, 263(1), 29–34. http://dx.doi.org/10.1016/S0021-9797(03)00213-3.

Tsai, W.; Lai, C.; Hsien, K. 2003b. The effects of pH and salinity on kinetics of paraquat sorption onto activated clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 224(1), 99–105. http://dx.doi.org/10.1016/S0927-7757(03)00258-9.

Tsai, W., Lai, C.; Hsien, K. 2004. Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth. Chemosphere, 55(6), 829–837. http://dx.doi.org/10.1016/j.chemosphere.2003.11.043.

Tsai, W.T.; Lai, C.W. 2006. Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth. Journal of Hazardous Materials, 134(1), 144–148. http://dx.doi.org/10.1016/j.jhazmat.2005.10.045.

Vagi, M.C.; Petsas, A.S.; Kostopoulou, M.N.; Lekkas, T.D. 2010. Adsorption and desorption processes of the organophosphorus pesticides, dimethoate and fenthion, onto three Greek agricultural soils. International Journal of Environmental and Analytical Chemistry, 90(3-6), 369–389. http://dx.doi.org/10.1080/03067310903194980.

Villacañas, F.; Pereira, M.F.R.; Órfão, J.J.; Figueiredo, J.L. 2006. Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science, 293(1), 128–136. http://dx.doi.org/10.1016/j.jcis.2005.06.032.

WHO. 2005. Bentonite, kaolin, and selected clay minerals. World Health Organization - Environmental Health Criteria 231.


Full Text: PDF



DOI: http://dx.doi.org/10.15544/jws.2015.003

Refbacks

  • There are currently no refbacks.
1817 views

Journal of Water Security eISSN 2345-0363

This journal is published under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License. Responsible editor: Laima Taparauskiene.